Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pineal Res ; 69(3): e12683, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32770854

RESUMO

The pharmacological properties of melatonin are well known. However, there is noticeable the lack of clinical trials that confirm the efficacy, security, absence of side effects in the short and long term, and the effective doses of melatonin. This point is especially important in diseases with high morbidity and mortality including COVID-19. There is not treatment for COVID-19, and several anti-inflammatory and antiviral molecules are being tested, and different vaccines are in preparation. Although the SARS-CoV-2 pandemic is apparently improving, it is expected new resurges next fall. Thus, looking for an effective treatment of COVID-19 is mandatory. Melatonin has significant anti-inflammatory, antioxidant, and mitochondrial protective effects, and its efficacy has been demonstrated in multiple experimental models of disease and in a clinical trial in sepsis. Because COVID-19 courses with a severe septic response, multiple reviews proposing melatonin as a treatment for COVID-19 have been published. Nevertheless, there is a lack of experimental and clinical data on the use of melatonin on SARS-CoV-2 infection. Accordingly, we designed a clinical trial with an injectable formulation of melatonin for intravenous perfusion in ICU patients suffering from COVID-19 that has been just approved by the Spanish Agency of Medicines and Medical Devices (AEMPS). The trial will allow by the first time understand the doses and efficacy of melatonin against COVID-19.


Assuntos
Antioxidantes/administração & dosagem , Infecções por Coronavirus/tratamento farmacológico , Melatonina/administração & dosagem , Pneumonia Viral/tratamento farmacológico , Betacoronavirus , COVID-19 , Humanos , Infusões Intravenosas , Pandemias , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
2.
Shock ; 53(5): 550-559, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31403491

RESUMO

BACKGROUND: Whereas the circadian system controls the daily production of melatonin and the daily activity of the immune system, increasing evidences support the association between circadian misalignment with the alterations in the immune response and melatonin rhythm during sepsis. The aim of this study was to analyze the daily changes in clock genes expression and the urinary excretion of 6-SM (6-sulfatoxymelatonin, the major melatonin metabolite), and their connection with the innate immune activity, oxidative status in blood, and clinical outcome during sepsis. METHODS: Healthy volunteers, non-septic intensive care unit (ICU) patients, and septic ICU patients, were evaluated. The expression of bmal1, per2, clock, and cry1 genes was determined by polymerase chain reaction in blood; 6-SM was assessed in urine by ELISA; plasma cytokines IL-1ß, IL-6, IL-8, TNFα, and IL-10 were determined by a multiplex array method, and lipid peroxidation (LPO) and protein oxidation (AOPP) by spectrophotometry. Hematological and biochemical data, and clinical scores of the patients, were also recorded. RESULTS: Clock gene rhythm was maintained in non-septic patients but blunted in septic ones, whereas the innate immune and the oxidative stress responses were significantly higher in the latter. 6-SM excretion was also more elevated in septic than in non-septic patients, and it correlated with the degree of the immune response and oxidative status. 6-SM also correlated with SOFA and procalcitonin in the patients. Proinflammatory cytokines, LPO, and AOPP were normalized in the patients once recovered from sepsis. CONCLUSION: Our data suggest a relationship between clock genes rhythm disruption, the immune response, and the oxidative status, with 6-SM acting as a compensatory response. ICU conditions are not a main clock disrupter because of the significant differences found in the responses of septic versus non-septic patients under the same ICU environment.


Assuntos
Proteínas CLOCK/genética , Ritmo Circadiano/fisiologia , Melatonina/análogos & derivados , Sepse/genética , Sepse/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas CLOCK/metabolismo , Estudos de Casos e Controles , Cuidados Críticos , Feminino , Humanos , Masculino , Melatonina/urina , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , RNA Mensageiro/metabolismo , Sepse/terapia
3.
Cell Mol Life Sci ; 74(21): 3965-3987, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28785808

RESUMO

After the characterization of the central pacemaker in the suprachiasmatic nucleus, the expression of clock genes was identified in several peripheral tissues including the immune system. The hierarchical control from the central clock to peripheral clocks extends to other functions including endocrine, metabolic, immune, and mitochondrial responses. Increasing evidence links the disruption of the clock genes expression with multiple diseases and aging. Chronodisruption is associated with alterations of the immune system, immunosenescence, impairment of energy metabolism, and reduction of pineal and extrapineal melatonin production. Regarding sepsis, a condition coursing with an exaggerated response of innate immunity, experimental and clinical data showed an alteration of circadian rhythms that reflects the loss of the normal oscillation of the clock. Moreover, recent data point to that some mediators of the immune system affects the normal function of the clock. Under specific conditions, this control disappears reactivating the immune response. So, it seems that clock gene disruption favors the innate immune response, which in turn induces the expression of proinflammatory mediators, causing a further alteration of the clock. Here, the clock control of the mitochondrial function turns off, leading to a bioenergetic decay and formation of reactive oxygen species that, in turn, activate the inflammasome. This arm of the innate immunity is responsible for the huge increase of interleukin-1ß and entrance into a vicious cycle that could lead to the death of the patient. The broken clock is recovered by melatonin administration, that is accompanied by the normalization of the innate immunity and mitochondrial homeostasis. Thus, this review emphasizes the connection between clock genes, innate immunity and mitochondria in health and sepsis, and the role of melatonin to maintain clock homeostasis.


Assuntos
Antioxidantes/farmacologia , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiologia , Melatonina/farmacologia , Mitocôndrias/metabolismo , Sepse/prevenção & controle , Animais , Proteínas CLOCK/genética , Humanos , Mitocôndrias/efeitos dos fármacos , Sepse/genética , Sepse/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...